Mitscherlich's Law: Generalization with several Fertilizers Hans Schneeberger

Institute of Statistics, University of Erlangen-Nürnberg, Germany 2010, 15th August

Abstract: It is shown, that the crop-yield z in dependence on two fertilizers x and y is the product of two components: z in dependence on x alone and z in dependence on y alone, divided by c, the yield without extern fertilizers, i.e. with x=y=0. For n fertilizers, we have the product of n components, divided by c^{n-1} .

Introduction

If only one fertilizer x is used, the dependence of yield z(x) on x first was given by Mitscherlich (1909) in form of the differential equation

$$\frac{\mathrm{d}\hat{z}}{\mathrm{d}x} = b(a - \hat{z}) \tag{1}$$

where a is the asymptotic value of z, b the factor of proportionality. As usual in statistics, \hat{z} is the hypothetical value, z the experimental value of the crop-yield. For equation (1) it is assumed: No over-fertilization. For the case of overfertilization see Schneeberger (2009b). Solution of formula (1) with boundary condition $\hat{z}(x = 0) = c$ is Mitscherlich's curve in the especial instructive form

$$\hat{z}(x) = c + (a - c)(1 - e^{-bx})$$
 (2a)

demonstrated in figure 1 with c=0.5, a=1.2, b=0,75. For estimation of the parameters in practice see Schneeberger (2009a).

Figure 1: Crop-yield $\hat{z}(x)$ as function of one fertilizer x

An other form of formula (2a) is: $\hat{z}(x) = a - (a - c)e^{-bx}$ (2b) used in the following.

Baule (1918) gave the solution of equation (1) in the form

$$\hat{z} = a(1 - e^{-b(x-d)})$$
 (3a)

with

$$d = -\frac{1}{b} \ln \frac{a}{a - c} \ (<0) \tag{3b}$$

in figure 1 we have d=-0.719.

Generalization

Now we assume two variables (=fertilizers) x and y (see figure 2)

Figure 2: Crop-yield $\hat{z}(x, y)$ as function of two fertilizers x and y

Then we have for the crop-yield $\hat{z}(x, y)$ with formula (2b)

$$\hat{z}(0, y) = c_1(y) = a_2 - (a_2 - c)e^{-b_2 y}$$
 (4a)

$$\hat{z}(x,0) = c_2(x) = a_1 - (a_1 - c)e^{-b_1x}$$
 (4b)

and

Note: For short we write $a_1(y = 0) = a_1$, $a_2(x = 0) = a_2$, $c_1(y = 0) = c_2(x = 0) = c$, $b_1(y = 0) = b_1$, $b_2(x = 0) = b_2$, $d_1(y = 0) = d_1$, $d_2(x = 0) = d_2$. Generalizing formulae (4) we have

$$\hat{z}(x, y) = a_2(x) - (a_2(x) - c_2(x))e^{-b_2(x)y}$$
(5a)

$$\hat{z}(x, y) = a_1(y) - (a_1(y) - c_1(y))e^{-b_1(y)x}$$
 (5b)

$$\frac{a_{2}(x)}{a_{1}(y)} = \frac{1 - \frac{a_{1}(y) - c_{1}(y)}{a_{1}(y)}e^{-b_{1}(y)x}}{1 - \frac{a_{2}(x) - c_{2}(x)}{a_{2}(x)}e^{-b_{2}(x)y}}$$
(6)

and herewith

Now I make use of a result of Mitscherlich (1947): ... "given different fertilizers, the parameter c (in Mitscherlich's notation) is constant for a fixed fertilizer, as I could prove in tens of years of work".... Mitscherlich's "Wirkungsgrad" c is our parameter b except for the constant ln10. This means:

$$\mathbf{b}_1(\mathbf{y}) = \mathbf{b}_1$$
 and $\mathbf{b}_2(\mathbf{x}) = \mathbf{b}_2$ independent of y resp. x (7)

Herewith we get from formula (6):

$$\frac{a_1(y) - c_1(y)}{a_1(y)} = 1 - \frac{c_1(y)}{a_1(y)} \text{ is independent of y, i.e. } \frac{a_1(y)}{c_1(y)} = \frac{a_1(y=0)}{c_1(y=0)} = \frac{a_1}{c}$$
(8a)

and

$$\frac{a_2(x)}{c_2(x)} = \frac{a_2}{c} \quad \text{independent of } x \tag{8b}$$

and with this

$$d_{1}(y) = \frac{1}{b_{1}} \ln \frac{a_{1}(y)}{a_{1}(y) - c_{1}(y)} = \frac{1}{b_{1}} \ln \frac{a_{1}}{a_{1} - c} = d_{1} \text{ independent of } y$$
(9a)

$$d_2(x) = d_2$$
 independent of x. (9b)

and

Finally we have from formula (5a) (or (5b)):

$$\hat{z}(x,y) = \frac{a_2}{c}c_2(x) - \frac{a_2 - c}{c}c_2(x)e^{-b_2 y} = \frac{1}{c}c_2(x)(a_2 - (a_2 - c)e^{-b_2 y}) = \frac{1}{c}c_2(x)c_1(y)$$
(10)

or in the most instructive form

$$\hat{z}(x,y) = \frac{1}{c} (c + (a_1 - c)(1 - e^{-b_1 x}))(c + (a_2 - c)(1 - e^{-b_2 y}))$$
(11)

RESULT: The generalized Mitscherlich formula in two variables is the product of the onedimensional formulae, multiplied by 1/c.

With formulae (9) one can show, that formula (11) is identical with the formula of Baule (1918).

$$\hat{z}(x,y) = A(1 - e^{-b_1(x-d_1)})(1 - e^{-b_2(y-d_2)})$$
 with $A = \frac{a_1a_2}{c}$ (12)

Equations (10) and (11) can easily be generalized for n fertilizers:

$$\hat{z}(x_1,...,x_n) = \frac{1}{c^{n-1}} \hat{z}(x_1,0,...0) \hat{z}(0,x_2,...0), \hat{z}(0,0,...,x_n)$$
(13)

Application

The following data are from an example of Steinhauser, Langbehn and Peters (1992) with x (in 100 kg/ha of P_2O_5), y (in 100 kg/ha of K_2O), z (in 1000kg/ha of rye).

Table 1 : Crop-yield $\hat{z}(x, y)$ in 1000 kg/ha of rye, x in 100 kg/ha of	P_2O_5 ,
y in 100 kg/ha of K_2O	

	$x_1 = 0.25$	$x_2 = 0.50$	$x_3 = 0.75$	$x_4 = 1.00$	x ₅ = 1.25	$x_6 = 1.50$
$y_1 = 0.25$	1.00	1.22	1.41	1.58	1.73	1.87
$y_2 = 0.50$	1.41	1.79	2.09	2.34	2.55	2.73
$y_3 = 0.75$	1.71	2.21	2.59	2.90	3.15	3.35
y ₄ = 1.00	2.00	2.55	2.98	3.32	3.59	3.81
y ₅ = 1.25	2.22	2.82	3.29	3.65	3.94	4.18
y ₆ = 1.50	2.41	3.05	3.55	3.93	4.24	4.50

The 5 parameters c_1, b_1, a_2, b_2 were determined with the method of Least Squares of Gauss

$$f(c,a_1,b_1,a_2,b_2) = \sum_{x} \sum_{y} (z(x,y) - \hat{z}(x,y))^2 \rightarrow Min$$
 (14)

summing over all 36 data-points. The minimum was gained iteratively with the non-linear Simplex-Method of Nelder and Mead (1965). The result is

c=0.2715,
$$a_1$$
=0.9472, b_1 = 0.899, a_2 =1.9438, b_2 = 1.027 and \hat{z} = 3.6832(0.2715 + 0.6757(1 - $e^{-0.899x}$))(0.2715 + 1.6723(1 - $e^{-1.027y}$))

In figure 3a the contour-lines $\hat{z}(x, y)=0.2, 0.4, ...4.0$ are drawn, in figure 3b intersecting curves $\hat{z}(x, y = \text{const.})$ for $y=d_2, 0, 0.5, 1.0, 1.5$ and ∞ are plotted. It is obvious that they are Mitscherlich-curves. We have $d_1 = -0.376$, $d_2 = -0.146$. The asymptotes of the curves $\hat{z}(x, y = c)$ are horizontal dotted straight lines in figure 3b. Especially for $y=\infty$ we get

 $\hat{z}(\infty,\infty) = \frac{a_1 a_2}{c} = 6.78$, Baule's parameter A in formula (12). $\hat{z}(x, y = \infty)$ is curve $a_2(x)$ of figure 2.

In analogy intersecting curves for x=const. could be plotted.

Figure 3a: Contour-lines $\hat{z}(x, y)$ =const. - in 1000 kg/ha of rye, x in 100 kg/ha of P_2O_5 , y in 100 kg/ha of K_2O

Figure 3b: Mitscherlich-curves $\hat{z}(x, y = \text{const.})$

Example: With fertilizer 100 kg/ha of $P_2O_5(x=1)$ and 50 kg/ha of K_2O (y=0.5) we get the crop-yield 2335 kg/ha of rye ($\hat{z} = 2.335$). With x=y=0 (i.e. without external fertilizers) we would get 272 kg/ha of rye ($\hat{z} = c = 0.272$).

Acknowledgement

I have to thank Dr. Embacher, Munich, who helped me to publish these papers in the internet.

A generalization with overfertilization is given in paper 5 (Paper 5: Mitscherlich's Law: Generalization with several Fertilizers and Overfertilization)

References

Baule B. (1918). Zu Mitscherlichs Gesetz der physiologischen Beziehungen, Landwirtschaftliche Jahrbücher 51, 363-385

Mitscherlich E.A. (1909). Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrags, Landwirtschaftliche Jahrbücher 38, 537-552

Mitscherlich E.A. (1947). Das Ergebnis von über 27000 Feld-Düngungsversuchen, Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 38. Band, 1947, Verlag Chemie Nelder J.R. and Mead R. (1965). A Simplex Method for function minimization. The Computer Journal 7, 303-313

Schneeberger H. (2009a). Mitscherlich's Law: Sum of two Exponential Processes. Conclusions. Internet: <u>www.soil-statistic.de</u>, paper 1 and paper 2

Schneeberger H. (2009b). Over-Fertilization: An Inverse Mitscherlich Process. Internet: <u>www.soil-statistic.de</u>, paper 3

Steinhauser H., Langbehn C. and Peters U. (1992). Einführung in die landwirtschaftliche Betriebslehre, Band 1, 5.Auflage